

Beam-driven Plasma Wakefield Acceleration at SPARC_LAB

Riccardo Pompili LNF-INFN on behalf of the SPARC_LAB collaboration

Advanced Accelerator Concepts Workshop

SPARC_LAB test-facility

Ferrario, M., et al. "SPARC_LAB present and future." NIMB 309 (2013): 183-188.

High brightness photo-injector

Serafini L., Ferrario M. "Velocity bunching in photo-injectors." AIP conference proceedings. 2001. Anderson, S. G., et al. "Velocity bunching of high-brightness electron beams." PRSTAB 8.1 (2005): 014401.

Radiation source activities

Plasma-based acceleration

- Several plasma-based schemes will be tested
 - **PWFA** resonant scheme \rightarrow **1-2 GV/m** expected
 - n_e~10¹⁶ cm⁻³, 1 mm diameter capillary, Hydrogen
 - LWFA, external injection → 5-10 GV/m expected
 n ~10¹⁷ cm⁻³, 100 μm diameter capillary, Hydrogen
- Goal: high quality accelerated beams
 - Maintain the high brightness of injected beams

Beam-driven PWFA

Plasma characterization

Plasma density measurement from H_{n} Stark broadening

The plasma density is controlled through the delay after the discharge

Vacuum level during plasma runs

Laser-comb with velocity bunching

• **Laser-comb**: multiple bunches train produced directly at the cathode

- ✓ Pulses delayed by birefringent crystals, delay lines to take full control of distances
- ✓ Easy setup, half-wave plates for (un)balancing (charge ramps...)

Ferrario, M., et al "Laser comb with velocity bunching: Preliminary results at SPARC." NIM 637.1 2011 S43-S46.

- Velocity bunching for bunch compression
 - Distance and duration tuning by moving S1 phase
 - Different approach with respect to other multibunches schemes, e.g. @ FACET.

C. Ronsivalle et al. "Large-bandwidth two-color free-electron laser driven by a comb-like electron beam." New Journal of Physics (2014): 033018.

Hogan, M. J., et al "Plasma wakefield acceleration experiments at FACET." New Journal of Physics 2010 055030.

Multi-bunch setup: 1 driver + witness

Advanced Accelerator Concepts Workshop

10/18

Multi-bunch setup: N driver + witness

Advanced Accelerator Concepts Workshop

11/18

Witness – tuning and characterization

Acceleration in plasma

- Hybrid kinetic-fluid simulation by Architect
 - **PIC** (bunch), **fluid** (plasma), 3-5 hours for 3 cm

	Q (pC)	σt (fs)	σx (μm)	E (MeV)	ε (μm)
Driver	200	180	5.5	116	4.5
Witness	20	35	3	116	2.4

Marocchino, A., et al. "Efficient modeling of plasma wakefield acceleration in quasi-non-linear-regimes with the hybrid code Architect." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2016).

Advanced Accelerator Concepts Workshop

13/18

Active plasma lens

- Focusing field produced by electric discharge in a plasma-filled capillary
 - Focusing field produced, according to Ampere's law, by the discharge current

$$B_{\phi}(r) = \frac{1}{2} \int_{0}^{r} \mu_{0} J(r') dr'$$

- Radial focusing
 - X/Y planes are not dependent as in quads
- Weak chromaticity
 - Focusing force scales linearly with energy
- Compactness
 - Higher integrated field than quad triplets
- Independent from beam distribution
 - Not sensitive to longitudinal/transverse charge profile as in passive plasma lenses

Van Tilborg, J., et al. "Active plasma lensing for relativistic laser-plasma-accelerated electron beams." Physical review letters 115.18 (2015): 184802.

14/18

Experimental layout

Preliminary results

Preliminary results

17/18

Acknowledgments

- M.P. Anania, M. Bellaveglia, A. Biagioni, E. Chiadroni, M. Croia, D. Di Giovenale, M. Ferrario, V. Lollo, A. Marocchino, G. Di Pirro, S. Romeo, J. Scifo, V. Shpakov, C. Vaccarezza, F. Villa (INFN, Frascati)
- A. Cianchi (Tor Vergata University of Rome)
- F. Filippi, A. Giribono, A. Mostacci (Sapienza University of Rome)
- F. Ciocci, A. Petralia (ENEA, Frascati)
- A. Bacci, V. Petrillo, A.R. Rossi, L. Serafini (INFN, Milano)

This work has been partially supported by the EU Commission in the Seventh Framework Program, Grant Agreement 312453-EuCARD-2 and the Italian Minister of Research in the framework of FIRB – Fondo per gli Investimenti della Ricerca di Base, Project n. RBFR12NK5K.

18/18